

CORSO TECNICO-PRATICO

CALCOLO PRESTAZIONE ENERGETICA

Giovedì 6 Ottobre 2016 Ing. Sonia Subazzoli

Programma della giornata

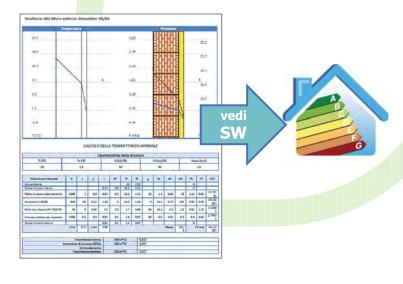
PRESENTAZIONE DEL SW TERMO E DEL CASO DI STUDIO

Presentazione del Software Termo e dell'edificio oggetto del calcolo

MATERIALI, STRUTTURE, TRASMITTANZA E PONTI TERMICI

Importazione e creazione di materiali e strutture trasparenti ed opache, calcolo e analisi del comportamento estivo e invernale, calcolo dettagliato della trasmittanza termica e inserimento dei Ponti Termici

LAYOUT E CALCOLO DEL FABBISOGNO ENERGETICO DELL'INVOLUCRO EDILIZIO


Inserimento dei dati geometrici di un edificio di esempio attraverso il layout grafico e calcolo dei fabbisogni energetici invernale ed estivo

CORSO sulla Certificazione Energetica

PRESENTAZIONE DEL SW TERMO E DEL CASO DI STUDIO

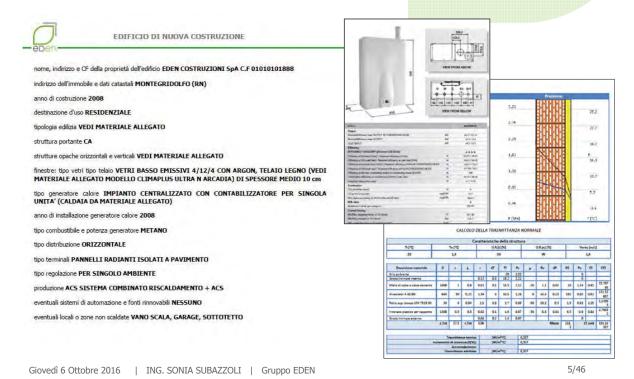
Presentazione del Software Termo e dell'edificio oggetto del calcolo

Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

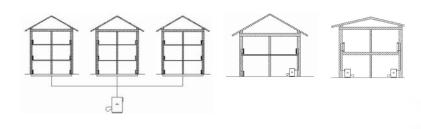
3/46

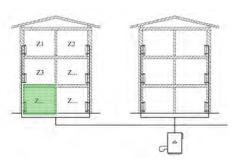
CASO DI STUDIO

Edificio oggetto dell'esercitazione



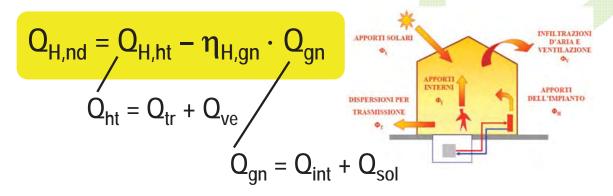
CASO DI STUDIO

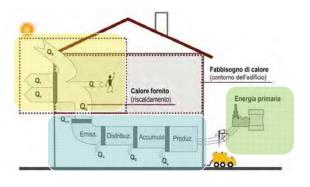

Edificio oggetto dell'esercitazione



CASO DI STUDIO

Individuazione del sistema edificio-impianto


UNI TS 11300-1 DGR 1275/15 ALLEGATO A, Art. 1 comma 7



7. L'attestato di prestazione energetica si riferisce ad una singola unità immobiliare. E' tuttavia ammessa la produzione di un singolo attestato riferito ad una pluralità di unità immobiliari, nel rispetto delle relative metodologie indicate nell'Allegato A-3, a condizione che esse abbiano la medesima destinazione d'uso, la medesima situazione al contorno, il medesimo orientamento e la medesima geometria e siano servite, qualora presente, dal medesimo impianto termico destinato alla climatizzazione invernale e, qualora presente, dal medesimo sistema di climatizzazione estiva.

CALCOLO DELLA PRESTAZIONE INVERNALE

 $Q_{p,H} = \frac{Q_{H,nd}}{\eta_H}$

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

7/46

DM 26/06/2015 | DGR 1275 CERTIFICAZIONE

Metodologie e metodi di calcolo della prestazione energetica

PROCEDURE

- 1) Procedura di calcolo di progetto o di calcolo standardizzato
- 2) Procedura di calcolo da rilievo sull'edificio
 - a) mediante procedure di rilievo, supportate anche da indagini strumentali, sull'edificio e/o sui dispositivi impiantistici effettuate secondo le normative di riferimento
 - b) per analogia costruttiva con altri edifici e sistemi impiantistici coevi integrata da banche dati o abachi nazionali, regionali o locali

METODI DI CALCOLO

- 1) Metodo di calcolo di progetto
- 2) Metodo di calcolo da rilievo sull'edificio
 - a) Rilievo in sito (metodo analitico e per analogia costruttiva)
 - b) Metodo semplificato

nuovo DOCET

UNI/TS 11300

METODI DI CALCOLO

Metodi di calcolo da rilievo sull'edificio

DGR 1275/15 ALLEGATO A-3

4.2 a) rilievo in sito (metodo analitico e per analogia costruttiva)

Con riferimento al metodo di calcolo degli indici di prestazione energetica, alle norme tecniche specifiche e alle relative semplificazioni ivi previste per gli edifici esistenti (a tal fine, le predette norme prevedono infatti, per gli edifici esistenti, modalità di determinazione dei dati descrittivi dell'edificio e degli impianti sotto forma di abachi e tabelle in relazione, ad esempio, alle tipologie e all'anno di costruzione) previa verifica della loro congruenza con le reali caratteristiche dell'edificio oggetto di valutazione energetica da realizzarsi mediante rilievo in situ, eventualmente con l'ausilio di adequate strumentazioni.

Gli strumenti di calcolo applicativi dei metodi di calcolo sopra indicati (software commerciali) devono garantire che i valori degli indici di prestazione energetica, calcolati attraverso il loro utilizzo, abbiano uno scostamento massimo di più o meno il 5% rispetto ai corrispondenti parametri determinati con l'applicazione dei pertinenti riferimenti nazionali.

La garanzia del rispetto dei suddetti scostamenti massimi per gli strumenti di calcolo e i software commerciali è fornita, previa verifica, attraverso una **dichiarazione resa dal CTI**.

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

9/46

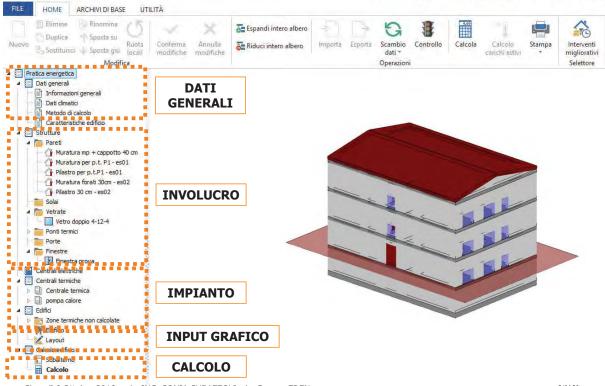
METODI DI CALCOLO - SOFTWARE VALIDATI

Elenco software validati sul sito www.cti2000.it

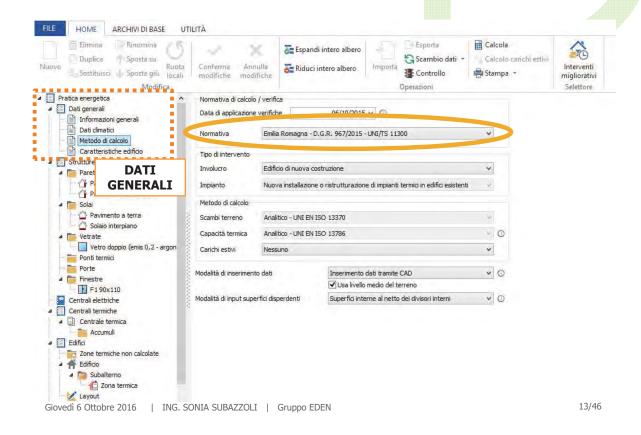
	Note	Versione certificata	Certificato	Versione protocollata	Protocolla	Metodo semplificato	Denominazione	Produttore
	4	4	- 2	6,2.0,0	n. 69 (29/06 /2016)	No	Blumatica Energy	Blumatica S.r.I.
	- 1		3.	7 rel. 2016.11	n. 70 (29/08 (2016)	No	Termolog EpiX	Logical Soft S.r.l.
		41	91	4.0.0.300	n, 71 (29/06 /2016)	No	Namirial Termo	Namirial S.p.A.
		4		45.55	n 72 (28/08 /2016)	_{NB}	reratu's	Acca Sonware 3.p.A.
				2017 - 6.0	n. 73 (29/06 /2016)	No	TermiPlan	Analist Group S.r.I.
			-	2.0	n. 74 (29/06 /2016)	No	Termiko One	Italsoft Group S.r.I.
			-	2017.a	n. 75 (29/06 /2016)	No	Cypetherm C.E.	Cype Ingenieros S.A.
	1.			8.01	n. 76 (29/06 /2016)	No	Euclide Certificazione Energetica	Geo Network S.r.I.
À AL D.LGS. 192/2	ODBATT	A DI CONF	CADANIZI	2017 rel.1	n. 77 (29/06 /2016)	No	Mc4 Suite	Mc4Software Italia S.r.I.
S 11300 Parti 1 e 2:2014; 4:2012 e CTI R14:2013		a DI CONP	GARANZII	14.00	n. 78 (29/06 /2016)	No	Energetika 2000	Topoprogram & Service di Giuseppe Mangione & C. sas
SOFTWARE CERTIFICATO N				7.0.0	n. 79 (01/07 /2016)	No	EC 700 calcolo prestazioni energetiche degli edifici	Edilclima 5.r.l.
Data di rilascio: YYYYYY				10.0	n. 80 (01/07 /2016)	No	Stima 10/TFM	Watts Industries Italia S.r.I.
gia e Ambiente - www.ct	ano Ener	notecoico Italia	Comitato Terr	3.0	n. 81 (01/07 /2016)	No	www.ape-online.it	Mc4Software Italia S.c.l.
g Simulation of Ministry	-	-		3.00	n. 82 (05/07 /2016)	No	Masterolima MC 11300	Aermec S.p.A.
	15		31	3.16.06.47	n, 83 (14/07 /2016)	Si	DOCET	ENEA e ITC-CNR
	4		2.	8.00.0010	n. 84 (19/07 /2016)	No	Lex10 Professional	ing. S. Daniele Alberti e ing. Antonio Mazzon
					n. 85 (19/07			

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

IL BILANCIO DEL SISTEMA EDIFICIO-IMPIANTO



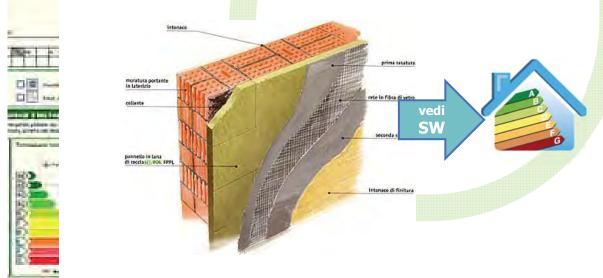
vedi


Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

11/46

IL SOFTWARE TERMO

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN



CORSO sulla Certificazione Energetica

MATERIALI, STRUTTURE, TRASMITTANZA E PONTI TERMICI

Importazione e creazione di materiali e strutture trasparenti ed opache, calcolo e analisi del comportamento estivo e invernale, calcolo dettagliato della trasmittanza termica e inserimento dei Ponti Termici

Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN 15/46

BILANCIO: TRASMISSIONE

Coefficiente globale di scambio termico per trasmissione

UNI TS 11300-1 11.1

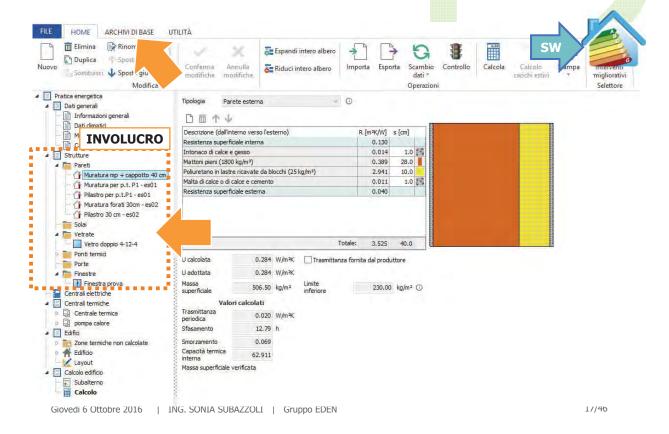
$$H_{tr,adj} = b_{tr,x} [\Sigma_i (A_{L,i} \cdot U_i) + \Sigma_k I_k \cdot \Psi_k + \Sigma_j \chi_j]$$

coefficiente globale di scambio termico per trasmissione[W/K] H_{tr,adi}:

fattore di correzione [-] $b_{tr.x}$:

area lorda di ciascun componente, i, termicamente uniforme, che separa A_{L.i}:

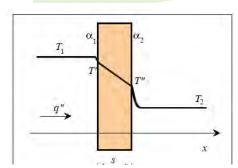
l'ambiente climatizzato dall'ambiente esterno [m²]


U_i: trasmittanza termica di ciascun componente, i, termicamente uniforme, che

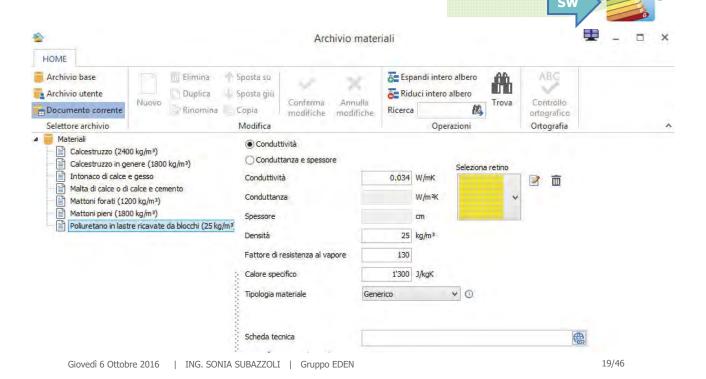
separa l'ambiente climatizzato dall'ambiente esterno [W/(m² K)]

lunghezza del ponte termico lineare [m] I_{K} :

 Ψ_k : trasmittanza termica lineare del ponte termico [W/mK]


trasmittanza termica puntuale del ponte termico [W/K] χ_i :

CALCOLO DELLA TRASMITTANZA


$$\mathbf{H}_{D} = \mathbf{\Sigma}_{i} \mathbf{A}_{i} \cdot \mathbf{U}_{i} + \mathbf{\Sigma}_{k} \mathbf{I}_{k} \cdot \mathbf{\Psi}_{k}$$

$$U = \frac{1}{\frac{1}{\alpha_i} + \sum_{\alpha_i} \frac{S_j}{\lambda_j} + \frac{1}{\alpha_e}}$$

- adduttanza sulla superficie interna della struttura (coefficiente che considera gli effetti dello scambio termico per convezione e per irraggiamento) [W/(m² K)]
- adduttanza sulla superficie esterna della struttura (coefficiente che considera gli effetti dello scambio termico per convezione e per irraggiamento) [W/(m² K)]
- S_j spessore di ogni strato componente la struttura opaca [m]
- λ_j conduttività di ogni strato componente la struttura opaca $[W/(m\ K)]$

La conducibilità termica λ di un materiale

CALCOLO DELLA TRASMITTANZA

La conducibilità termica λ di un materiale

Pannelli isolanti in poliuretano espanso rigido - PIR

Polythan 023

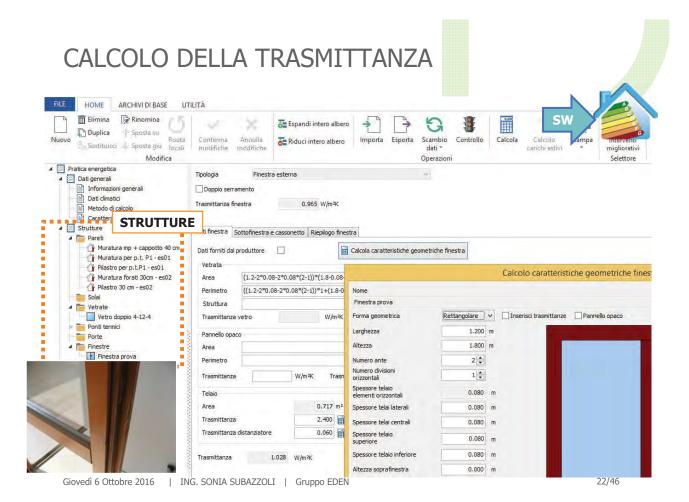
Pannello rigido in schiuma poliuretanica Knauf Insulation rivestito su entrambi i lati con rivestimento multistrato di carta metallizzata.

Caratteristiche	Valore	Unità di misura	Norma
Densità	36 ± 1,5	kg/m³	EN 13165
Dimensioni dei pannelli	600 x 1200 mm		
Spessori disponibili	20, 30, 40, 50, 60, 70, 80, 90, 100, 120 mm		
Conducibilità termica dichiarata λ _D	0,023	W/mK	EN 13165
Resistenza termica dichiarata R _D			
Spessore (mm) 20	0,85		
Spessore (mm) 30	1,30		
Spessore (mm) 40	1,70	7	
Spessore (mm) 50	2,15		
Spessore (mm) 60	2,60	m ² K/W	EN 13165
Spessore (mm) 70	3,00	m ⁻ K/W	EN 13165
Spessore (mm) 80	3,45		
Spessore (mm) 90	3,90		
Spessore (mm) 100	4,35		
Spessore (mm) 120	5,20		

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

La Norma UNI TR 11552 - i nuovi abachi

prospetto 2	[rasmittanza termica di chiusure verticali opache [W/(m2 K)]	a) b)
-------------	--	-------


Spessore [m]	Muratura di pietrame intonacata	Muratura di mattoni pieni intonacati sulle due facce	Muratura di mattoni semipieni o tufo	Pannello prefabbricato in calcestruzzo non isolato	Parete a cassa vuota con mattoni forati ^{c)}
0,15	(A)	2,59	2,19	3,59	-
0,20		2,58	1,96	3,28	9
0,25		2,01	1,76	3,02	1,20
0,30	2,99	1,77	1,57	2,80	1,15
0,35	2,76	1,56	1,41	2,61	1,10
0,40	2,57	1,39	1,26	2,44	1,10
0,45	2,40	1,25	1,14	14	1,10
0,50	2,25	1,14	1,04		1,10
0,55	2,11	1,07	0,96		-
0,60	2,00	1,04	0,90	-	

a) I sottofinestra e i cassonetti degli avvolgibili devono essere computati come strutture a parte.

 in presenza di strutture isolate dall'esterno la trasmittanza termica della parete può essere calcolata sommando alla resistenza termica della struttura non isolata la resistenza termica dello strato isolante aggiunto.

I valori della trasmittanza termica sono calcolati considerando la camera d'aria a tenuta.

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

Trasmittanza di una finestra

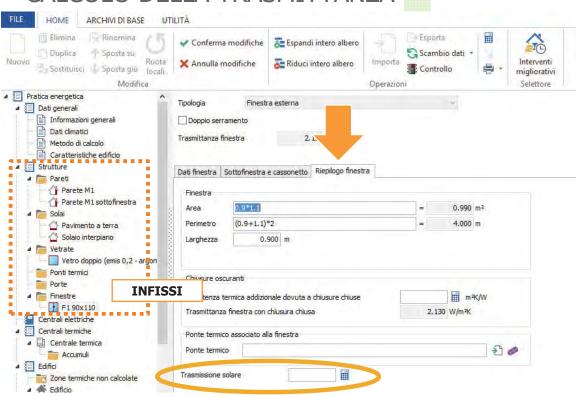
$$U_{w} = \frac{A_{g}U_{g} + A_{f}U_{f} + L_{g}\psi_{g}}{A_{g} + A_{f}}$$
 [W/m²K]

 U_{q} = trasmittanza termica dell'elemento vetrato

 U_{f} = trasmittanza termica del telaio

 Ψ_{g} = trasmittanza lineare del giunto fra le lastre di vetro, da considerarsi solo in presenza di più vetri

 $L_a =$ perimetro della superficie vetrata


 $A_q =$ area del vetro

 A_f = area del telaio (calcolata considerando la proiezione su un piano parallelo al vetro)

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

23/46

CALCOLO DELLA TRASMITTANZA

BILANCIO: APPORTI SOLARI

Apporti solari sui componenti trasparenti

UNI TS 11300-1 14

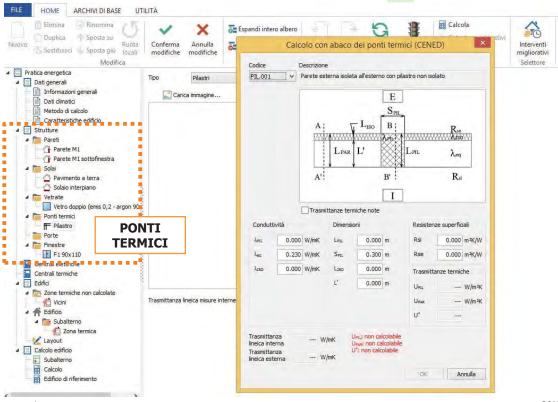
$$A_{sol,w} = F_{sh,gl} \cdot g_{gl} \cdot (1-F_f) \cdot A_{w,p}$$

g_{ql} trasmittanza di energia solare totale

I valori della trasmittanza di energia solare degli elementi vetrati possono essere determinati attraverso la norma **UNI EN ISO 410**

 $g_{ql} = g_{ql,n} \cdot F_{w}$

F, fattore telaio


Il fattore di correzione dovuto al telaio $(1-F_f)$ è pari al **rapporto tra l'area trasparente e l'area totale del componente finestrato**. In assenza di dati di progetto attendibili o comunque di informazioni più precise, si può assumere un valore convenzionale del fattore telaio pari a 0.8

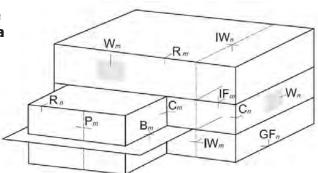
- **F**_{sh,gl} fattiore di riduzione relativo all'utilizzo di **schermature mobili**
- **A**_{w,p} area proiettata totale del componente vetrato

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

25/46

SOFTWARE TERMO: PONTI TERMICI

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN


CALCOLO DEI PONTI TERMICI

Definizione di Ponte Termico da norma 10211

Come riportato nella norma UNI EN ISO 10211:2008, un ponte termico è una parte dell'involucro edilizio dove la resistenza termica, altrove uniforme, cambia in modo significativo per effetto di:

- compenetrazione totale o parziale di materiali con conduttività termica diversa nell'involucro edilizio
- variazione dello spessore della costruzione
- differenza tra l'area della superficie disperdente sul lato interno e quella del lato esterno, come avviene per esempio in corrispondenza dei giunti tra parete e pavimento o parete e soffitto

I ponti termici possono essere pertanto di forma, di struttura o misti

27/46

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

CALCOLO DEI PONTI TERMICI

Calcolo e Abachi dei Ponti Termici

Per il calcolo della trasmittanza termica lineare o lineica Ψ le due alternative sono pertanto:

Calcolarsi Φ^{2D} attarverso un software di calcolo agli elementi finiti

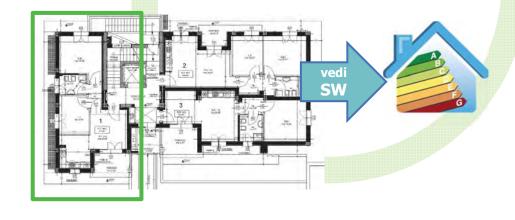
Lawrence Berkeley National Laboratory - **THERM**http://windows.lbl.gov/software/therm/therm.html

Utilizzare un abaco dei ponti termici calcolato in modo conforme alla norma ISO 10211

Atlante Nazionale dei ponti termici

Abaco dei Ponti Termici CENED - gratuito

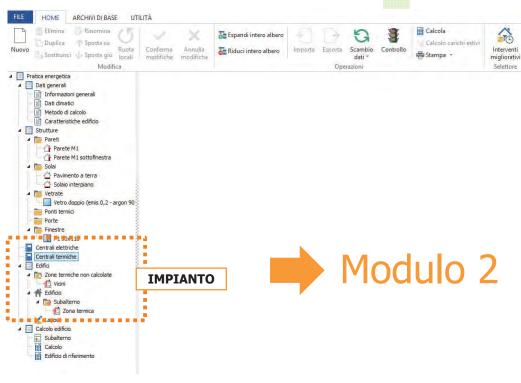
Catalogo PT Svizzera - gratuito

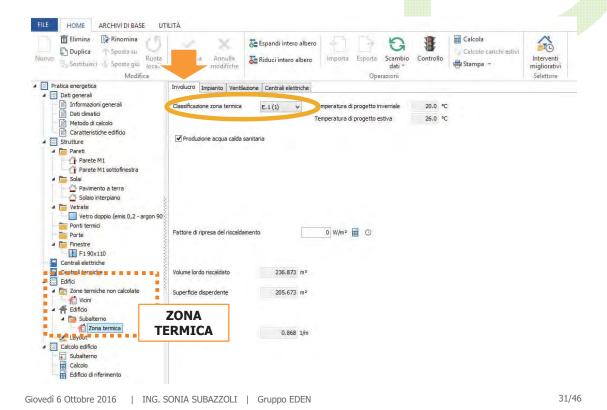


CORSO sulla Certificazione Energetica

3

LAYOUT E CALCOLO DEL FABBISOGNO ENERGETICO DELL'INVOLUCRO FDILIZIO


Inserimento dei dati geometrici di un edificio di esempio attraverso il layout grafico e calcolo dei fabbisogni energetici invernale ed estivo



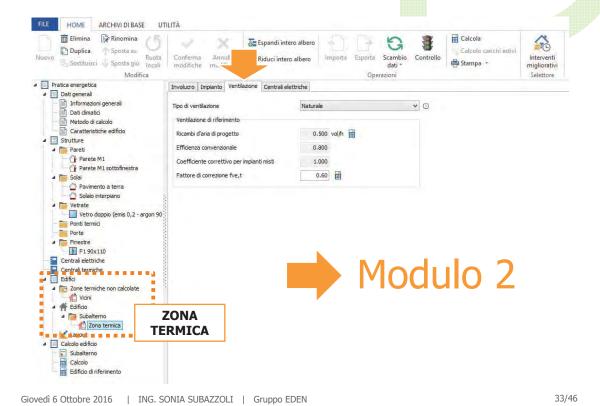
Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

29/46

IL SOFTWARE TERMO


APPORTI INTERNI GRATUITI

Inserimento degli apporti gratuiti col sw



$$Q_{int} = \{\Sigma_k \mathbf{\Phi}_{int,mn,k}\} \cdot t + \{\Sigma_l (1-b_{tr,l}) \cdot \mathbf{\Phi}_{int,mn,u,l}\} \cdot t$$

espressi in funzione della destinazione d'uso secondo quanto riportato nel prospetto:

Categoria di edificio	Destinazione d'uso	Apporti termici sensibili Φ _{int} / A _i W/m ²	Portata di vapore acques ($G_{w,CC}+G_{w,A}$)/ A_i 10 ⁻³ -g/(h-m ²)
E.1(1) - E.1(2)	Abitazioni	4)	b)
E.1(1)	Collegi, caserme, case di pena, conventi	6	6
E.1 (3)	Edifici adibiti ad albergo, pensione ed attività similari	6	5
E.2	Edifici adibiti a uffici e assimilabili	6	6
E.3	Edifici adibiti a ospedali, cliniche o case di cura e assimilabili	8	14
E.4 (1)	Cinema e teatri, sale di riunione per congressi	8	27
E.4 (2)	Mostre, musei	8	16
	Biblioteche,	8	12
	Luoghi di culto	8	16
	Bar	10	31
E.4 (3)	Ristoranti	10	26
	Sale da ballo	10	31
E.5	Edifici adibiti ad attività commerciali e assimilabili	8	9
E.6 (1)	Piscine, saune e assimilabili	10	9
E.6 (2)	Palestre e assimilabili	5	11
E.6 (3)	Servizi di supporto alle attività sportive	4	8
E.7	Edifici adibiti ad attività scolastiche a tutti i livelli e assimilabili	4	16
E.8	Edifici adibiti ad attività industriali ed artigianali e assimilabili	6	0

BILANCIO: VENTILAZIONE

Scambio termico per trasmissione

UNI TS 11300-1 5.2

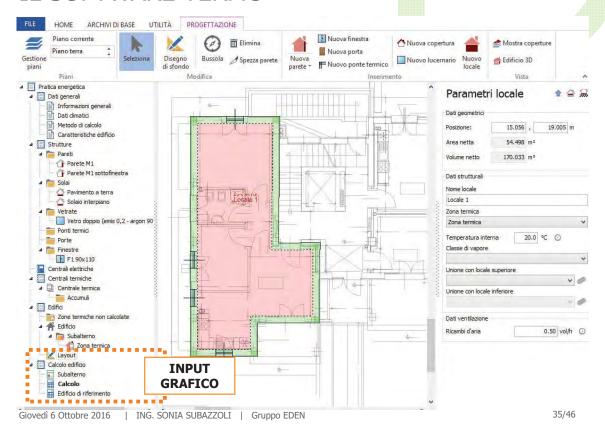
 $Q_{H,ve} = H_{ve,adj} \cdot (\theta_{int,set,H} - \theta_e) \cdot t$

 $Q_{H've}$: scambio termico per ventilazione in regime di riscaldamento [kWh oppure J]

H_{H,ve,adj}: coefficiente globale di scambio termico per ventilazione, corretto per tener conto della differenza di temperatura interno-esterno [W/K]

 $\theta_{\text{int,set,H}}$: temperatura interna di set-point della zona

considerata [°C]

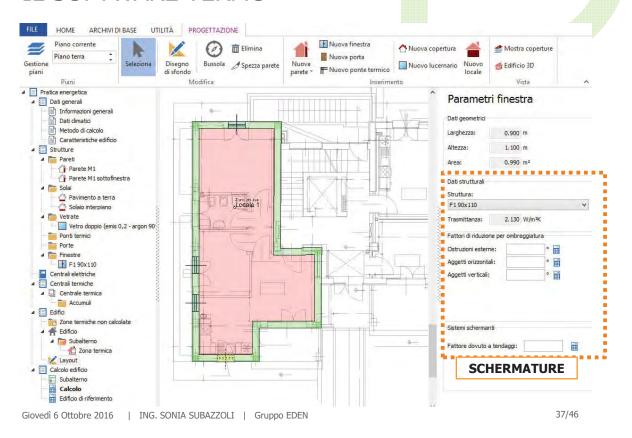

 θ_e : valore medio mensile della temperatura media

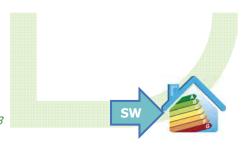
mensile esterna [°C]

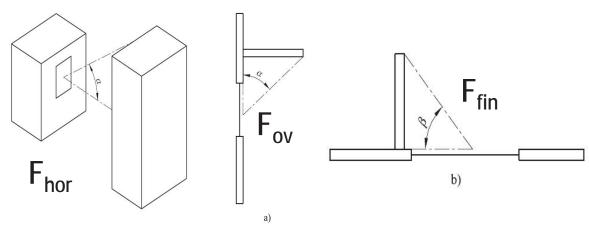
t: la durata del mese considerato [h]

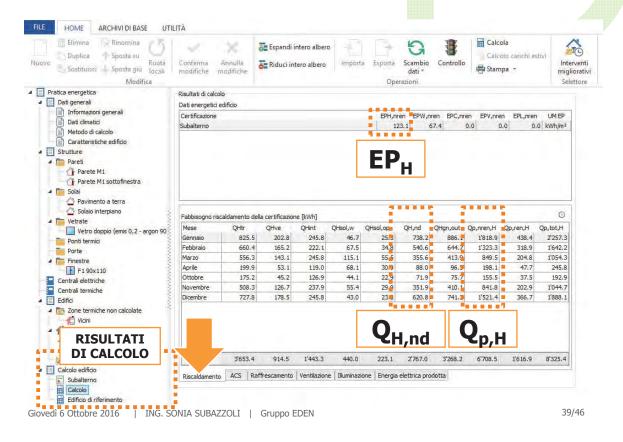
Modulo 2

LAYOUT DELL'EDIFICIO

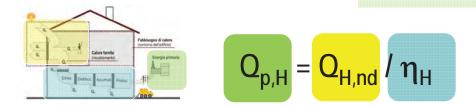

Inserimento dei parametri geometrici dell'edificio


Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN


BILANCIO: APPORTI SOLARI


I fattori di ombreggiatura

UNI TS 11300-1 5.3


$F_{sh,ob,k} = F_{hor} \cdot min(F_{ov}, F_{fin})$

IL BILANCIO DEL SISTEMA EDIFICIO-IMPIANTO

Indice di prestazione energetica invernale

$$\blacksquare EP_{H} = Q_{p,H} / S_{u}$$
 [kWh / mq anno]

INDICE DI PRESTAZIONE ENERGETICA PER LA CLIMATIZZAZIONE INVERNALE, RIFERITO L'UNITÀ DI SUPERFICIE UTILE ENERGETICA PER ANNO

Su SUPERFICIE UTILE ENERGETICA: ai fini della determinazione degli indici di prestazione energetica, si intende la superficie netta calpestabile dell'area interessata dal funzionamento di ciascuno dei servizi energetici previsti in un edificio

IL BILANCIO DEL SISTEMA EDIFICIO-IMPIANTO

EPtot - **CLASSIFICAZIONE**

Ep_{gl,nr} INDICE DI PRESTAZIONE ENERGETICA GLOBALE DELL'EDIFICIO, espresso in energia primaria non rinnovabile (indice nr o nren)

$$Ep_{gl,nr} = EP_{H,nr} + EP_{W,nr} + EP_{C,nr} + EP_{V,nr} + EP_{L,nr} + EP_{T,nr}$$

EP_{H,rn} INDICE DI PRESTAZIONE ENERGETICA PER LA CLIMATIZAZIONE INVERNALE espresso in energia primaria non rinnovabile (indice nr o nren)

Deriva dall'indice della capacità dell'involucro edilizio nel contenere il fabbisogno di energia per il riscaldamento (EP_{H,nd}: indice di prestazione termica utile per la climatizzazione invernale dell'edificio) e dal rendimento dell'impianto di riscaldamento (η_H: rendimento medio stagionale dell'impianto di riscaldamento)

Più efficiente

A4

A3

A2

A1

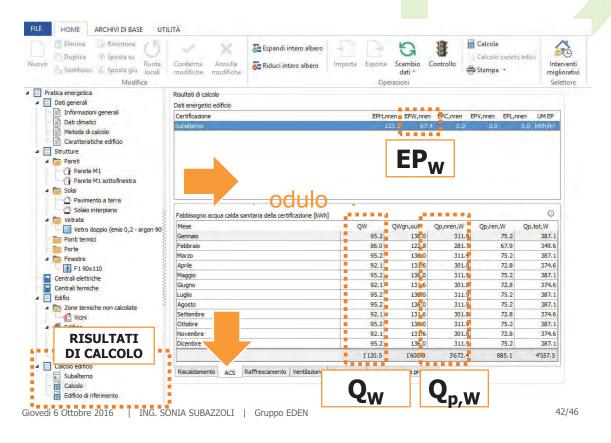
B

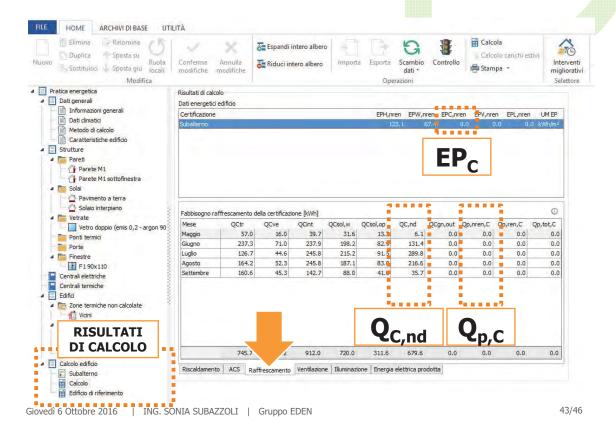
C

D

E

F


G


Meno efficiente

Giovedì 6 Ottobre 2016 | ING. SONIA SUBAZZOLI | Gruppo EDEN

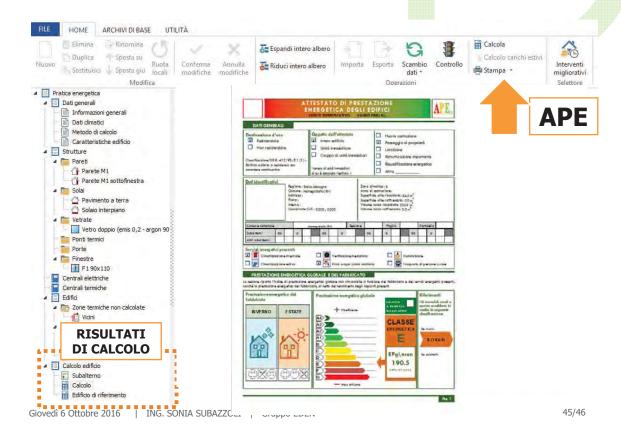
41/46

IL SOFTWARE TERMO

DM 26/06/2015 | DGR 1275 CERTIFICAZIONE

Servizi energetici compresi nel calcolo della prestazione energetica

Dal al 1º Ottobre 2015:



RESIDENZIALE:

SEMPRE SE PRESENTI MAI

NON RESIDENZIALE:

SEMPRE SE PRESENTI

Ing. Sonia Subazzoli sonia.subazzoli@gruppoeden.it

www.facebook.com/gruppoeden

